ORIGINS & VALUES OF LENGTH

 ORIGINS & VALUES OF LENGTH

Link to the Book: The Gregorian Universal System and Units of Measurement System (GUSUMS): The Art of Mathematics

The current popular and widely used measurement systems are the Imperial System and the Metric System. Based on our current approach, the conversion of the common length units in the Metric and Imperial systems is based on  1 inch being equal to 2.54cm. Thus, the multiples and multipliers of the Metric and Imperial Units of length are as follows.

Current Conversion of Metric & Imperial Units of Length

CURRENT CONVERSION

METRIC-CM

IMPERIAL-INCHES

IMPERIAL-FOOT

IMPERIAL-YARDS

METRIC-METRES

METRIC-KM

IMPERIAL-MILES

METRIC-CM

1

0.393700787

0.032808399

0.010936133

0.01

0.00001

6.21371E-06

IMPERIAL-INCHES

2.54

1

0.083333333

0.027777778

0.0254

0.0000254

1.57828E-05

IMPERIAL FOOT

30.48

12

1

0.333333333

0.3048

0.0003048

0.000189394

IMPERIAL-YARDS

91.44

36

3

1

0.9144

0.0009144

0.000568182

NETRIC-METRES

100

39.37007874

3.280839895

1.093613298

1

0.001

0.000621371

METRIC-KM

100000

39370.07874

3280.839895

1093.613298

1000

1

0.621371192

IMPERIAL-MILES

160934.4

63360

5280

1760

1609.344

1.609344

1

 

According to GUSUMS, the above conversion is likely to be inaccurate. GUSUMS explains that we misinterpreted the concepts of the feet or palm as a measure to mean a particular person’s feet or palm when it should have been interpreted to mean the ratio of the foot or palm to other body parts. For example, by interpreting the feet as the length of a particular person’s foot e.g. King Henry the First we got the wrong value. This is because the value gotten only applies to that particular person. However, if we measure the foot in terms of the ratio of the foot to the average person’s leg, chest, height, etc. we get a highly constant figure since it’s a ratio or is a figure that does not apply to the unique properties of a single person. In addition, since all the units of length in both the Metric and Imperial systems are linear, then their multiples, multipliers, and conversion factors should be based on the natural numbers that are multiples and multipliers of 360. This is because all or most linear values involve joining points of a circle and the points in a circle can only be gotten by dividing the circle into equal parts. Thus, the possible and perfect divisions of a circle can be summarized as the natural numbers that can divide 360 which are;

 

Natural Numbers that can divide 360

Reverse order

  • 360 ÷ 1 = 360
  • 360 ÷ 2 = 180
  • 360 ÷ 3 = 120
  • 360 ÷ 4 = 90
  • 360 ÷ 5 = 72
  • 360 ÷ 6 = 60
  • 360 ÷ 8 = 45
  • 360 ÷ 9 = 40
  • 360 ÷ 10 = 36
  • 360 ÷ 12 = 30
  • 360 ÷ 15 = 24
  • 360 ÷ 18 = 20

 

  • 60 ÷ 20 = 18
  • 360 ÷ 24 = 15
  • 360 ÷ 30 = 12
  • 360 ÷ 36 = 10
  • 360 ÷ 40 = 9
  • 360 ÷ 45 = 8
  • 360 ÷ 60 = 6
  • 360 ÷ 72 = 5
  • 360 ÷ 90 = 4
  • 360 ÷ 120 = 3
  • 360 ÷ 180 = 2
  • 360 ÷ 360 = 1

 

First 12 Natural Numbers

The next 12 Natural Numbers

  •  1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18

20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360.

 

Based on the above table, the likely factors/multipliers of all linear values are likely to be

ROTATION MULTIPLES

ROTATION MULTIPLIERS

REVOLUTION MULTIPLES

REVOLUTION MULTIPLIERS

1

1

1

1

2

0.5

4

0.25

3

0.333333333

9

0.111111111

4

0.25

16

0.0625

5

0.2

25

0.04

6

0.166666667

36

0.027777778

8

0.125

64

0.015625

9

0.111111111

81

0.012345679

10

0.1

100

0.01

12

0.083333333

144

0.006944444

15

0.066666667

225

0.004444444

18

0.055555556

324

0.00308642

20

0.05

400

0.0025

24

0.041666667

576

0.001736111

30

0.033333333

900

0.001111111

36

0.027777778

1296

0.000771605

40

0.025

1600

0.000625

45

0.022222222

2025

0.000493827

60

0.016666667

3600

0.000277778

72

0.013888889

5184

0.000192901

90

0.011111111

8100

0.000123457

120

0.008333333

14400

6.94444E-05

180

0.005555556

32400

3.08642E-05

360

0.002777778

129600

7.71605E-06

 

Based on the above factors as well as on the idea that all units of measurement are based on the circle, then the only possible way that we can convert Imperial linear units of length to Metric Units of length is if 1 inch is equal to exactly 2.5cm. Based on this, the table below shows the GUSUMS version of how the imperial and Metric Systems should be converted if they are both drawn from the circle.

GUSUMS Conversion of Linear Metric & Imperial Units of Length

GUSUMS-CONVERSION

METRIC-CM

GUSUMS-INCHES

GUSUMS-FOOT

GUSUMS-YARDS

METRIC-METRES

METRIC-KM

GUSUMS-MILES

METRIC-CM

1

0.4

0.033333333

0.011111111

0.01

0.00001

6.31313E-06

GUSUMS-INCHES

2.5

1

0.083333333

0.027777778

0.025

0.000025

1.57828E-05

GUSUMS-FOOT

30

12

1

0.333333333

0.3

0.0003

0.000189394

GUSUMS-YARDS

90

36

3

1

0.9

0.0009

0.000568182

METRIC-METRES

100

40

3.333333333

1.111111111

1

0.001

0.000631313

METRIC-KM

100000

40000

3333.333333

1111.111111

1000

1

0.631313131

GUSUMS-MILES

158400

63360

5280

1760

1584

1.584

1

 

From the above conversion, you can see that all the multiples and multipliers of both the GUSUMS units of length and the metric units of length all conform to the expected behavior of linear units and values. An alternative explanation as to why 1 inch should be equal to 2.5cm and not 2.54cm can be done by trying to derive both units from the circle using the concept of linear and circular values.

DERIVING THE METRIC & IMPERIAL SYSTEM FROM THE CIRCLE.

From the page on the Origin of Metrology & the Origin of PI, I demonstrated that a circle of diameter 1 as the basis of linear and circular values. For example, when you draw a circle with a diameter of 1 and inscribe a hexagon inside it, the circumference of the circle will signify the circular value and the perimeter of the hexagon will signify the first linear value or the linear circumference. The following example illustrates this.

First Circular & Linear Values



The above image shows the first circular and linear values. You cannot that the first circular value is pi and the first linear value is 3.  This is true in practice as all circular measurements are based on pi each the circumference or the area of a circle or an arc. The same applies to all linear values as they are based on a factor of 3 or multiples and multipliers of 3. For example, 4*3 inches is 1 foot, and 12*3 feet is 1 yard. I also demonstrated that drawing subsequent circles and hexagons maintains the same patterns.

Second Circular & Linear Values


The above image shows that doubling the radius or diameter also doubles the sides of the hexagon and its perimeter and also doubles the circular circumference thus resulting in the same ratio.

 

Third Circular & Linear Values



The above image shows that tripling the radius or diameter also triples the sides of the hexagon and its perimeter (linear circumference) and also triples the circular circumference thus resulting in the same ratio of linear and circular values.

The Origin of the Imperial System

GUSUMS argues that the linear circumference was the origin of the imperial system. Thus the base number of the imperial system should be 3. However, after further advancements in mathematics and mathematical operations, it was/is possible to play around with the 3 and create additional units. Despite this, the units of length in the metric system largely still follow this rule as shown in the table below

 

DIAMETER

LINEAR BASE NUMBERS-LBN

LBN MULTIPLIERS

1

3

0.333333333

2

6

0.166666667

3

9

0.111111111

4

12

0.083333333

5

15

0.066666667

6

18

0.055555556

7

21

0.047619048

8

24

0.041666667

9

27

0.037037037

10

30

0.033333333

11

33

0.03030303

12

36

0.027777778

13

39

0.025641026

14

42

0.023809524

15

45

0.022222222

16

48

0.020833333

17

51

0.019607843

18

54

0.018518519

19

57

0.01754386

20

60

0.016666667

21

63

0.015873016

22

66

0.015151515

23

69

0.014492754

24

72

0.013888889

25

75

0.013333333

26

78

0.012820513

27

81

0.012345679

28

84

0.011904762

29

87

0.011494253

30

90

0.011111111

31

93

0.010752688

32

96

0.010416667

33

99

0.01010101

34

102

0.009803922

35

105

0.00952381

36

108

0.009259259

 

I can simplify the above table to the following;

Column1

3

6

9

12

15

18

21

24

27

30

33

36

1

0.333333

0.166667

0.111111

0.083333

0.066667

0.055556

0.047619

0.041667

0.037037

0.033333

0.030303

0.027778

2

0.666667

0.333333

0.222222

0.166667

0.133333

0.111111

0.095238

0.083333

0.074074

0.066667

0.060606

0.055556

3

1

0.5

0.333333

0.25

0.2

0.166667

0.142857

0.125

0.111111

0.1

0.090909

0.083333

4

1.333333

0.666667

0.444444

0.333333

0.266667

0.222222

0.190476

0.166667

0.148148

0.133333

0.121212

0.111111

5

1.666667

0.833333

0.555556

0.416667

0.333333

0.277778

0.238095

0.208333

0.185185

0.166667

0.151515

0.138889

6

2

1

0.666667

0.5

0.4

0.333333

0.285714

0.25

0.222222

0.2

0.181818

0.166667

7

2.333333

1.166667

0.777778

0.583333

0.466667

0.388889

0.333333

0.291667

0.259259

0.233333

0.212121

0.194444

8

2.666667

1.333333

0.888889

0.666667

0.533333

0.444444

0.380952

0.333333

0.296296

0.266667

0.242424

0.222222

9

3

1.5

1

0.75

0.6

0.5

0.428571

0.375

0.333333

0.3

0.272727

0.25

10

3.333333

1.666667

1.111111

0.833333

0.666667

0.555556

0.47619

0.416667

0.37037

0.333333

0.30303

0.277778


Interpretation

FOOTS

 

YARD

1

=

0.33333333333333

2

=

0.66666666666667

3

=

1

4

=

1.3333333333333

5

=

1.6666666666667

7

=

2.3333333333333

8

=

2.6666666666667

9

=

3

10

=

3.3333333333333

INCHES

 

FOOTS

1

=

0.083333333333333

2

=

0.16666666666667

3

=

0.25

4

=

0.33333333333333

5

=

0.41666666666667

7

=

0.58333333333333

8

=

0.66666666666667

9

=

0.75

10

=

0.83333333333333

 

INCHES

 

YARD

1

=

0.027777777777778

2

=

0.055555555555556

3

=

0.083333333333333

4

=

0.11111111111111

5

=

0.13888888888889

7

=

0.19444444444444

8

=

0.22222222222222

9

=

0.25

10

=

0.27777777777778

PALM

 

FINGER (CLOTH)

1

=

0.66666666666667

2

=

1.3333333333333

3

=

2

4

=

2.6666666666667

5

=

3.3333333333333

7

=

4.6666666666667

8

=

5.3333333333333

9

=

6

10

=

6.6666666666667

PALM

 

YARD

1

=

0.083333333333333

2

=

0.16666666666667

3

=

0.25

4

=

0.33333333333333

5

=

0.41666666666667

7

=

0.58333333333333

8

=

0.66666666666667

9

=

0.75

10

=

0.83333333333333

PALM

 

FATHOM

1

=

0.041666666666667

2

=

0.083333333333333

3

=

0.125

4

=

0.16666666666667

5

=

0.20833333333333

7

=

0.29166666666667

8

=

0.33333333333333

9

=

0.375

10

=

0.41666666666667

INCHES

 

PACE

1

=

0.033333333333333

2

=

0.066666666666667

3

=

0.1

4

=

0.13333333333333

5

=

0.16666666666667

7

=

0.23333333333333

8

=

0.26666666666667

9

=

0.3

10

=

0.33333333333333

INCHES

 

LINK (RAMSDEN'S; ENGINEER'S)

1

=

0.083333333333333

2

=

0.16666666666667

3

=

0.25

4

=

0.33333333333333

5

=

0.41666666666667

7

=

0.58333333333333

8

=

0.66666666666667

9

=

0.75

10

=

0.83333333333333

 

 

 

 

 

Basically, from the above table, I can acquire almost all imperial units. This confirms that the imperial units originated from the circle and are based  on the linear circumference of the circle. In addition, the factors or multipliers provide a glimpse of what the multiples and multipliers of linear values should look like as they all/mostly end with recurring numbers, multiples/multipliers of 3, or multiples/multipliers of 5.

A key exception to the above statement is when the column has a value of 21. 21 is exceptional as it contains random numbers with no particular patterns such as when column 1 is 1,2,4,5,8, & 10. However, in multiples of 3, we can see that the values of the pi rules such as 0.142857142, 0.285714285, 0.428571428, 0.571428571, 0.714285714, 0.857142857, or a whole number begin to appear. This confirms that the linear and circular values unite in the LCMs of the linear base number which is 3 and it multiples/multipliers and the circular base number which is 7 and its multiples/multipliers. Thus, the base number of linear values is 3 and the base number of circular values is 7. This was the origin of pi as explained in the pi page.

ORIGINS OF THE METRIC SYSTEM

The above table confirms that 3 is the base number of the Imperial units of length. The next challenge is to derive the metric system from the circle by just using the concept of linear and circular values. From the pages/posts on the Origins of Metrology & Origins of Pi, I had stated that pi is not actually the basis or base number of circular units. I illustrated that 7 is the basis of identifying circular values.  This is why I started and gave the GUSUMS formulae for calculating the circumference of a circle as;

Circumference of a circle = Diameter/base number of circular units + d*the base number of linear values

Base number of circular units =7

the base number of linear values =3

Circumference of a circle = Diameter/7 + d*3

For example; the circumference of a circle with a diameter of 1 is equal to;

Circumference of a circle when D is 1 = 1/7 + d*3

=3

I also provided the following table to show that this is true.

D

D/7

D*3

D/7+D*3

1

0.142857143

3

3.142857143

2

0.285714286

6

6.285714286

3

0.428571429

9

9.428571429

4

0.571428571

12

12.57142857

5

0.714285714

15

15.71428571

6

0.857142857

18

18.85714286

7

1

21

22

8

1.142857143

24

25.14285714

9

1.285714286

27

28.28571429

10

1.428571429

30

31.42857143

11

1.571428571

33

34.57142857

12

1.714285714

36

37.71428571

13

1.857142857

39

40.85714286

14

2

42

44

15

2.142857143

45

47.14285714

16

2.285714286

48

50.28571429

17

2.428571429

51

53.42857143

18

2.571428571

54

56.57142857

19

2.714285714

57

59.71428571

20

2.857142857

60

62.85714286

21

3

63

66

22

3.142857143

66

69.14285714

23

3.285714286

69

72.28571429

 

Therefore, the base number of circular units is 7 and the base number of linear units is 3. Therefore, if the linear base number is 3 the circular base number is 7. If we double the linear base number to 6 then the base number of circular measurements will also double to 14. If we triple the base linear number to 9 the circular base number will also triple to 21. This goes on to infinity. So, how can we derive the metric units from this?

We do know that the base value of metric units is 10 as changing from one unit to another e.g. from km, cm, m, dm, mm, Dm, etc and vice versa involves dividing or multiplying the values by 10. In addition, we can see that adding the subsequent linear base numbers and their corresponding circular base numbers adds up to multiples of 10. For example, the first linear base number which is 3 plus the first circular base number which is 7 gives a total of 10. The second linear base number of 6 plus the 2nd circular base number which is 14 when added together gives a total of 10. The third unit is 9 as the linear base number plus 21 as the circular base number is equal to 10. With this, we can derive the metric units from the circle as shown below.

 

LINEAR BASE NUMBER(LBN)=IMPERIAL SYSTEM

CIRCULAR BASE NUMBER-CBN

LBN+CBN=METRIC SYSTEM

3

7

10

6

14

20

9

21

30

12

28

40

15

35

50

18

42

60

21

49

70

24

56

80

27

63

90

30

70

100

33

77

110

36

84

120

39

91

130

42

98

140

45

105

150

48

112

160

51

119

170

54

126

180

57

133

190

60

140

200

63

147

210

66

154

220

69

161

230

72

168

240

75

175

250

78

182

260

81

189

270

84

196

280

87

203

290

90

210

300

93

217

310

96

224

320

99

231

330

102

238

340

105

245

350

108

252

360

 

Thus, using the circle we have managed to derive both the metric and imperial system. This shows that they also both originated from the circle and confirms the GUSUMS hypothesis.

 

CONFIRMING THE GUSUMS CONVERSION OF METRICS TO IMPERIAL & VICE VERSA

If LBN is the right value of the imperial system, then their exact equivalent and equal values should be LBN+CBN. From this, we can identify the correct way to convert the imperial system to the metric system based on the circle. The result is shown below. I have highlighted essential values from the GUSUMS conversion table to show why 1 inch can only be equal to 2.5cm and not 2.54cm. To simplify the information and to get the exact factor, I have divided 1 by each imperial unit as well as 1 by each metric unit.

LBN=IMPERIAL SYSTEM

CBN

LBN+CBN=METRIC LBN

1/IMPERIAL LBN

1/METRIC LBN

3

7

10

0.333333333

0.1

6

14

20

0.166666667

0.05

9

21

30

0.111111111

0.033333333

12

28

40

0.083333333

0.025

15

35

50

0.066666667

0.02

18

42

60

0.055555556

0.016666667

21

49

70

0.047619048

0.014285714

24

56

80

0.041666667

0.0125

27

63

90

0.037037037

0.011111111

30

70

100

0.033333333

0.01

33

77

110

0.03030303

0.009090909

36

84

120

0.027777778

0.008333333

39

91

130

0.025641026

0.007692308

42

98

140

0.023809524

0.007142857

45

105

150

0.022222222

0.006666667

48

112

160

0.020833333

0.00625

51

119

170

0.019607843

0.005882353

54

126

180

0.018518519

0.005555556

57

133

190

0.01754386

0.005263158

60

140

200

0.016666667

0.005

63

147

210

0.015873016

0.004761905

66

154

220

0.015151515

0.004545455

69

161

230

0.014492754

0.004347826

72

168

240

0.013888889

0.004166667

75

175

250

0.013333333

0.004

78

182

260

0.012820513

0.003846154

81

189

270

0.012345679

0.003703704

84

196

280

0.011904762

0.003571429

87

203

290

0.011494253

0.003448276

90

210

300

0.011111111

0.003333333

93

217

310

0.010752688

0.003225806

96

224

320

0.010416667

0.003125

99

231

330

0.01010101

0.003030303

102

238

340

0.009803922

0.002941176

105

245

350

0.00952381

0.002857143

108

252

360

0.009259259

0.002777778

 

The above table confirms that based on the circle, the following is the only possible way to align the Imperial Units and Values and that is why if we were to adhere to the original values and conversion of the metric and imperial units based on the originally intended and interpreted, an inch should be equal to 2.5cm and not 2.54cm.

Basically, converting metrics to imperial follows the following pattern for the first view of original units. Not that the mile is  derived or is defined based on km.

Column1

3

6

9

12

15

18

21

24

27

30

33

36

0.0001

3.33E-05

1.67E-05

1.11E-05

8.33E-06

6.67E-06

5.56E-06

4.76E-06

4.17E-06

3.7E-06

3.33E-06

3.03E-06

2.78E-06

0.001

0.000333

0.000167

0.000111

8.33E-05

6.67E-05

5.56E-05

4.76E-05

4.17E-05

3.7E-05

3.33E-05

3.03E-05

2.78E-05

0.01

0.003333

0.001667

0.001111

0.000833

0.000667

0.000556

0.000476

0.000417

0.00037

0.000333

0.000303

0.000278

0.1

0.033333

0.016667

0.011111

0.008333

0.006667

0.005556

0.004762

0.004167

0.003704

0.003333

0.00303

0.002778

1

0.333333

0.166667

0.111111

0.083333

0.066667

0.055556

0.047619

0.041667

0.037037

0.033333

0.030303

0.027778

10

3.333333

1.666667

1.111111

0.833333

0.666667

0.555556

0.47619

0.416667

0.37037

0.333333

0.30303

0.277778

100

33.33333

16.66667

11.11111

8.333333

6.666667

5.555556

4.761905

4.166667

3.703704

3.333333

3.030303

2.777778

1000

333.3333

166.6667

111.1111

83.33333

66.66667

55.55556

47.61905

41.66667

37.03704

33.33333

30.30303

27.77778

10000

3333.333

1666.667

1111.111

833.3333

666.6667

555.5556

476.1905

416.6667

370.3704

333.3333

303.0303

277.7778

100000

33333.33

16666.67

11111.11

8333.333

6666.667

5555.556

4761.905

4166.667

3703.704

3333.333

3030.303

2777.778

 

 

SIGNIFICANCE OF THE CONCEPT

The concept is not just about converting numbers as it is of great significance to our ability to understand our world and the universe at large. With just a small change I can identify the exact values and properties of all objects in our solar system with a margin of error of zero. This means I can identify the exact diameters, rotational periods, circumferences, etc. of faraway objects such as planets, stars, moons, stars, etc., by just using our current values that are often with margins of error as much as +-3 km to get the exact value. This is because all the creation is also based on the circle. GUSUMS theorizes that the following is how we can identify the exact values of planetary objects. Please note that the first few explanations are just meant to provide a basic understanding and it is the example of Pluto that provides some evidence of this.

 

PLANETARY OBJECTS

DIVISION

DIAMETERS (D)

d/7

LINEAR C

CIRCULAR C

PLANETARY OBJECTA

START

1

0.142857143

3

3.142857143

PLANETARY OBJECTA

2

0.285714286

6

6.285714286

PLANETARY OBJECTA

3

0.428571429

9

9.428571429

PLANETARY OBJECTA

MIDPOINT

4

0.571428571

12

12.57142857

PLANETARY OBJECTA

5

0.714285714

15

15.71428571

PLANETARY OBJECTA

6

0.857142857

18

18.85714286

PLANETARY OBJECTA

END

7

1

21

22

PLANETARY OBJECTB

START

8

1.142857143

24

25.14285714

PLANETARY OBJECTB

9

1.285714286

27

28.28571429

PLANETARY OBJECTB

10

1.428571429

30

31.42857143

PLANETARY OBJECTB

END

11

1.571428571

33

34.57142857

PLANETARY OBJECTB

12

1.714285714

36

37.71428571

PLANETARY OBJECTB

13

1.857142857

39

40.85714286

PLANETARY OBJECTB

MIDPOINT

14

2

42

44

PLANETARY OBJECTC

START

15

2.142857143

45

47.14285714

PLANETARY OBJECTC

16

2.285714286

48

50.28571429

PLANETARY OBJECTC

17

2.428571429

51

53.42857143

PLANETARY OBJECTC

END

18

2.571428571

54

56.57142857

PLANETARY OBJECTC

19

2.714285714

57

59.71428571

PLANETARY OBJECTC

20

2.857142857

60

62.85714286

PLANETARY OBJECTC

MIDPOINT

21

3

63

66

PLANETARY OBJECTD

START

22

3.142857143

66

69.14285714

PLANETARY OBJECTD

23

3.285714286

69

72.28571429

PLANETARY OBJECTD

24

3.428571429

72

75.42857143

PLANETARY OBJECTD

MIDPOINT

25

3.571428571

75

78.57142857

PLANETARY OBJECTD

26

3.714285714

78

81.71428571

PLANETARY OBJECTD

27

3.857142857

81

84.85714286

PLANETARY OBJECTD

END

28

4

84

88

PLANETARY OBJECTE

START

29

4.142857143

87

91.14285714

PLANETARY OBJECTE

30

4.285714286

90

94.28571429

PLANETARY OBJECTE

31

4.428571429

93

97.42857143

PLANETARY OBJECTE

END

32

4.571428571

96

100.5714286

PLANETARY OBJECTE

33

4.714285714

99

103.7142857

PLANETARY OBJECTE

34

4.857142857

102

106.8571429

PLANETARY OBJECTF

MIDPOINT

35

5

105

110

PLANETARY OBJECTF

START

36

5.142857143

108

113.1428571

PLANETARY OBJECTF

37

5.285714286

111

116.2857143

PLANETARY OBJECTF

38

5.428571429

114

119.4285714

PLANETARY OBJECTF

END

39

5.571428571

117

122.5714286

PLANETARY OBJECTF

40

5.714285714

120

125.7142857

PLANETARY OBJECTF

41

5.857142857

123

128.8571429

PLANETARY OBJECTF

MIDPOINT

42

6

126

132

PLANETARY OBJECTG

START

43

6.142857143

129

135.1428571

PLANETARY OBJECTG

44

6.285714286

132

138.2857143

PLANETARY OBJECTG

45

6.428571429

135

141.4285714

PLANETARY OBJECTG

END

46

6.571428571

138

144.5714286

PLANETARY OBJECTG

47

6.714285714

141

147.7142857

PLANETARY OBJECTG

48

6.857142857

144

150.8571429

PLANETARY OBJECTG

MIDPOINT

49

7

147

154

 

The above table shows my working theory of identifying the planetary objects in our solar. We know that the creator was a perfectionist and based on the pi rules the circular measures of planetary objects are likely to have values ending in 0.142857142, 0.285714285, 0.428571428, 0.571428571, 0.714285714, 0.857142857, or a whole number. Theoretically speaking, since the creator was a perfectionist and planetary objects are so perfect then it means they are all designated exact values or operating areas that they can collide with each other. We also know that the circumference or the relationship between two objects orbiting or revolving around each other follows the pattern below.

Rotation and Revolution of Planetary Objects



The above image shows the only possible way in which planetary objects can rotate/revolve around one another without colliding no matter how close they get. For example, assuming the small green circle is the sun and the orange circles are how the earth rotates around the sun. The above is the same exact formula we use to calculate the orbits of all the planetary objects by adding an extra circumference. In addition, the above simple image shows exactly how we can calculate the perihelion and aphelion of the planets. Note the 7 circles that make the complete circles. If we were to combine the above image and the table prior to the image, then;

1.      Each planetary object is likely to be allocated an ‘operating area’ that is between 0.142857142, 0.285714285, 0.428571428, 0.571428571, 0.714285714, 0.857142857, or a whole number for example 1 or 7. This limits the possible exact values of planetary objects to just 7 values.

2.      I can enhance this by stating that it is highly likely that the exact value e.g., the equatorial diameter of the planetary objects is either at the start, mid-point, or end of the 7 values. Regarding the perihelion and aphelion of the planets, it is highly likely that the perihelion is just at the whole number before the start of 0.142857 or at exactly where the 0.142857 appears and the perihelion is likely to be where the next whole number appears.

3.      The values can also be used to identify the number of objects surrounding a planetary object. For example, if the earth’s ‘operating area’ is from 1-490 and there are 7 whole divisions surrounding it as in the image below then maybe that is the ‘operating area’ of its moon.

4.      My working theory so far is that the values of the planets such as their diameters and radii are actually whole numbers. This means that the exact diameters of the planets can be identified where the metric and imperial units are whole numbers. However, we have never noticed this since we are using the wrong conversion of Metric to imperial units.

 

To avoid sounding like a conspiracy theorist as this is still a work in progress. I will give the example of Pluto. The diameter of Pluto in KM is stated as 2376 metric units. I am using the metric units as the base value for the analysis as the contention is whether 1 inch is equal to 2.54 cm or 2.5cm. Remember, my working theory is that the diameter in KM when converted to miles should also be a whole number.

1 km to the current imperial mile assuming 1inch is equal to 2.54cm requires multiplying the number of KM by 0.621371192

1km based on GUSUMS where 1 inch is equal to 2.5cm requires multiplying the number of km by 0.6313131313131

The results of this is shown below

FACTOR

D OF PLUTO

IN MILES

IMPERIAL MILE

0.621371192

2376

1476.377953

GUSUMS MILE

0.631313131

2376

1500

 

Thus, the GUSUMS hypothesis is not far-fetched area mere speculations as there is practical evidence of this. However, I think is premature to make this conclusion as we need to first address the exact value of pi to improve the current estimates and make the necessary corrections before farther investigating this concept.

Link to the Book: The Gregorian Universal System and Units of Measurement System (GUSUMS): The Art of Mathematics

No comments:

Post a Comment